Article ID Journal Published Year Pages File Type
5452779 Calphad 2017 9 Pages PDF
Abstract
This work presents a thermodynamic evaluation of the Ca(NO3)2-MNO3 (M: Li, Na, K, Rb, Cs) binary systems using the CALPHAD approach. The required Gibbs energy of liquid Ca(NO3)2 is missing in the literature and has been successfully evaluated in the present work with a fusion enthalpy of 23849 J mol−1. The substitutional solution model can thus be employed to describe the Ca(NO3)2-base liquid phase. All the intermediate compounds are treated to be stoichiometric and their Gibbs energies comply with the Neumann-Kopp rule. Empirical functions relating mixing enthalpies to ionic parameters are employed to predict the corresponding values of binary melts which are used as input data to assist in parameters optimization for the liquid phases. The final calculated results show good agreement with most of the experimental and predicted data.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,