Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5452786 | Calphad | 2017 | 10 Pages |
Abstract
In this work, based on the critical evaluation of previous optimizations and available experimental data in the published literature, the Fe-Dy and Fe-Tb binary systems were re-assessed thermodynamically using the CALPHAD method. The solution phases including liquid, fcc-Fe, bcc-Fe, bcc-Dy, bcc-Tb, hcp-Dy and hcp-Tb, were described by the substitutional solution model and their excess Gibbs energies were expressed with the Redlich-Kister polynomial. Due to their narrow homogeneity ranges, the intermetallic compounds, Fe17Dy2, Fe23Dy6, Fe3Dy, Fe2Dy, Fe17Tb2, Fe23Tb6, Fe3Tb and Fe2Tb, were modeled as stoichiometric compounds. Self-consistent thermodynamic parameters to describe the Gibbs energies of various phases in the Fe-Dy and Fe-Tb binary systems were obtained finally. The calculated results are in good agreement with the reported phase equilibria and thermodynamic properties.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
M.H. Rong, X.L. Chen, J. Wang, G.H. Rao, H.Y. Zhou,