Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5455571 | Materials Science and Engineering: A | 2017 | 20 Pages |
Abstract
Ti-Ni-Cu-Zr-based crystal/glassy dual-phase alloy samples with different sizes and good mechanical properties were manufactured. The structure of these samples was examined via X-ray Diffraction, Scanning Electron Microscopy, and Transmission Electron Microscopy. The developed dual-phase structure alloys combine the high strength of glassy alloys and plasticity of crystalline alloys. Plastic deformation was enhanced by this dual-phase structure. Mechanical characterization of the alloys revealed three deformation stages, namely a martensitic transformation, dislocation slip in a crystalline phase, and shear deformation of the glassy matrix. Two types of effects involving the martensitic transformation were observed: superelastic behavior and the transformation induced plasticity (TRIP) effect, which provide an additional deformation mechanism and lead to a significant increase in the plasticity of these dual-phase samples. The results indicate that the fraction of glassy phase occurring in large rods formed at lower cooling rates is lower than that occurring in smaller rods; therefore, the deformation-induced martensitic transformation of the crystalline cP2 phase in the large samples occurs at lower stresses.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
J. Jiang, S. Ketov, H. Kato, D.V. Louzguine-Luzgin,