Article ID Journal Published Year Pages File Type
5455573 Materials Science and Engineering: A 2017 26 Pages PDF
Abstract
Mechanical testing of dual phase (DP) steels at low strain rates (10−3 s−1) have shown that they are susceptible to dynamic strain aging (DSA) between 100 °C-400 °C. During industrial forming processes at intermediate strain rates (1-102 s−1), the local temperatures may rise to the DSA range due to deformation heating which may disturb the exceptional formability of these steels. In this study, two grades of DP steel (DP590 and DP800) are tested at thermomechanical conditions relevant to forming and the effects of DSA on the formability are established. Test results show that the DSA controls the deformation between 200 °C-300 °C through serrations in the stress-strain curves of both grades. With increasing strain rates (up to 1 s−1) and temperatures, DSA intensifies and results in severe drops in uniform and total ductility with negative strain rate sensitivity, indicating poor formability at these conditions. A detailed analysis of the serrations coupled with dislocation density measurements by x-ray analysis suggests that the serrations can be linked to a periodic microstructural feature.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,