Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5455759 | Materials Science and Engineering: A | 2017 | 33 Pages |
Abstract
The initial flow softening behavior and restoration mechanisms of Ti-5Al-2Sn-2Zr-4Mo-4Cr with basketweave microstructure during hot working were investigated. The stress-strain curves presented an obvious flow softening behavior at the range of strain rates from 0.0002 sâ1 to 0.1 sâ1. The dynamic recovery (DRC) in α and β phases was responsible for the initial flow softening rather than the rotation of α platelets to a “soft” orientation. Following this continuous dynamic recrystallization (CDRX) of α and β phases based on the DRC is the main restoration mechanism related to the following flow softening. CDRX, as the first step of fragmentation of α phase, resulted in the globularization of α platelets. The globularization fraction of α platelets increased with decreasing strain rates and rising deformation temperatures since the CDRX of α phase and the penetration of β phase were the diffusion-controlled process accelerated by the higher deformation temperatures and longer diffusion time. Furthermore, the CDRX of β grains was always linked to the kinked sharp α grains in order to coordinate the deformation from α phase.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
J.Z. Sun, M.Q. Li, H. Li,