Article ID Journal Published Year Pages File Type
5456329 Materials Science and Engineering: A 2017 7 Pages PDF
Abstract
The austenitic CrMnN stainless steels are high-strength, tough, and non-magnetic, and are used in oil field applications. The steels have high alloying contents, and precipitation of Cr-nitrides and/or intermetallic phases can occur when cooling through the temperature region 950-700 °C. The nitride precipitates appear in the grain boundaries but can be difficult to observe in the microstructure due to their small size. However, there is an effect of precipitation on corrosion and impact strength and a modelling approach to predict precipitation is valuable for alloy and process development. In the present work precipitation simulations were applied to a CrMnN steel composition, and coupled to experimental investigations after heat treatments at 700 and 800 °C. The early stages, with short heat-treatment times, were studied. The simulations were performed using TC-PRISMA, a software for calculation of multiphase precipitation kinetics, using multicomponent nucleation and growth models. Dedicated thermodynamic and kinetic databases were used for the simulations. The main precipitate was identified by experiments and simulations to be the Cr2N nitride, and the precipitation during isothermal heat treatments was investigated. Isothermal precipitation diagrams are simulated, and the influence of precipitation kinetics on toughness is discussed.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,