Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5456426 | Materials Science and Engineering: A | 2017 | 22 Pages |
Abstract
Implementation of Additive Manufacturing (AM) parts in the growing applications within the automotive and aerospace industries encourages further investigations of the material behavior under various strain rates, spanning from quasi-static to the high strain rate regimes. Although mechanical properties of AM-Selective Laser Melting (SLM) AlSi10Mg parts under a static regime have been investigated, the strain rate sensitivity of these materials, to the best of our knowledge, has not been discussed in the literature. In this work, the properties of AM-SLM AlSi10Mg material were systematically investigated under a wide range of strain rates, spanning from 2.77Ã10â6 to 2.77Ã10â1 Sâ1. The AM-SLM AlSi10Mg alloy, as opposed to Al alloys fabricated by conventional methods, was found to be strain rate sensitive with significant changes to the flow stress and strain hardening exponents with an increase in strain rate. The fracture mechanisms of these specimens, built in different orientations, are discussed.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
I. Rosenthal, A. Stern, N. Frage,