Article ID Journal Published Year Pages File Type
5456504 Materials Science and Engineering: A 2017 9 Pages PDF
Abstract
The microstructure and mechanical properties of as-cast and heat treated Mg-6Zn-4Al-xCu (x=0, 0.5, 1.0 and 1.5 wt%) alloys were investigated in this work. The results show that the grain sizes of the alloys decrease considerably with increasing Cu addition, and the eutectics are refined with 0.5% Cu addition. The icosahedral quasi-crystalline phase is observed in Mg-6Zn-4Al and Cu-containing alloys,and the MgAlCu phase forms in the Cu-containing alloys because of Cu addition. Compared with Mg-6Zn-4Al alloy, the Cu-containing alloys exhibit improved age-hardening response during single-aging treatment. In addition, high-density fine precipitates are formed in the matrix during double-aging treatment, resulting in remarkable improvement of the tensile strength. The double aged Mg-6Zn-4Al-0.5Cu alloy shows the relatively optimal tensile properties. The yield strength, ultimate tensile strength and elongation are 202 MPa, 312 MPa and 7%, respectively, which is attributed to the combined effects of fine grains and the uniform distribution of high-density fine precipitates. It is noticed that the ductility of as-aged Cu-containing alloys is lower than that of the as-aged Mg-6Zn-4Al alloy due to the stress concentration during the tensile stress caused by the residual phases distributed along the grain boundaries after solution treatment.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,