Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5456668 | Materials Science and Engineering: A | 2016 | 11 Pages |
Abstract
The effect of Ti contents between 0.10 and 0.50 wt% on the grain size and mechanical properties of UNS S44100 ferritic stainless steel produced by investment casting was investigated. The mechanical properties were related to tensile strength and elongation. The average grain sizes of the as-cast specimens decreased obviously with increasing Ti content due to the increasing number of (Ti,Nb)(C,N) precipitates, with sizes of 2.0-4.0 µm, acting as the nuclei for heterogeneous nucleation. The average sizes of TiN clusters in steels 2 and 3 were 3.6 and 7.0 µm, respectively, whereas no TiN clusters were discovered in steel 1 with 0.13 wt% Ti. The experimental results were in good agreement with the thermodynamic analysis of TiN formation. The precipitation temperature of TiN showed a rising trend with increasing Ti content, which implies that larger TiN clusters are more likely to be induced with Ti contents greater than 0.30 wt%. Some as-cast specimens were normalized at 850 °C for 2 h in order to improve the mechanical properties. In addition, the morphology of the TiN clusters, which caused a sharply decline in the mechanical properties of the as-cast specimens with increasing Ti content, showed no change after normalizing. The tensile strengths of the normalized specimens in the three steels increased to different degrees and the improvement of elongation in steel 1 was remarkable. The comparatively rational Ti content of UNS S44100 ferritic stainless steel for meeting the requirements of investment casting production is between 0.10 and 0.20 wt%.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Y. Kang, W.M. Mao, Y.J. Chen, J. Jing, M. Cheng,