Article ID Journal Published Year Pages File Type
5456752 Materials Science and Engineering: A 2017 9 Pages PDF
Abstract
This work performs a systematic investigation of identifying how the volume fraction of the in-situ dendrites affects the plasticity of metallic glass composites. The quasi-static uniaxial compressions show that the global plastic strain does not follows a linear rule-of-mixture with the dendrite volume faction, instead, a slow-fast-slow enhancement behaviour is observed with increasing dendrite volume fraction. It is demonstrated that the nucleation and propagation of shear bands in these composites are dependent on the dendrite volume fraction. When the dendrite volume fraction exceeds a critical value, multiple shear bands emerge in a spherical plastic zone around a dendrite. It is further proposed that the percolation of these spherical plastic zones contributes to the fast increase in the plastic strain of the glass composites. Our findings offer important implications for the microstructural optimization of the metallic glass composites with desirable mechanical properties.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,