Article ID Journal Published Year Pages File Type
5457293 Solid State Communications 2017 7 Pages PDF
Abstract
Single crystals of Tb0.5Sr0.5MnO3 were grown in an optical float zone furnace and their magnetic and thermodynamic properties were studied. Temperature dependent DC magnetization measurements at different fields show strong irreversibility below the magnetic anomaly at 44 K. The upward deviation from ideal CW behavior well above the transition temperature and its field independent nature are signatures of non-Griffiths phase. The origin non-Griffiths phase owe to competition between the antiferromagnetic and ferromagnetic Mn3+-Mn4+ interactions mediated through intervening oxygen. Further, 44 K transition is confirmed as a magnetic glassy transition. The estimated dynamical spin flip time (τ0=2.11(3)×10−14 s) and zν(9.3(2)) values fall into the range of typical spin-glass systems. Detailed memory and temperature cycling relaxation measurements were performed and support the Hierarchical relaxation model. Low-temperature specific heat data displays a linear term, identifying the glassy magnetic phase contribution.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, ,