Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5457325 | Solid State Communications | 2017 | 7 Pages |
Abstract
The nano-magnetites with particle, rod, tube, and ring crystal morphologies were synthesized and the differences between macroscopic and microscopic magnetic properties were studied. The macroscopic magnetic properties of nano-magnetites obtained via a superconducting quantum interference device (SQUID) showed that both coercive magnetic field and saturation magnetization per unit volume followed the orders of ring > particle > tube > rod, respectively. This indicated that the crystal morphology affected macroscopic magnetic properties. The particle nano-magnetite contained a single domain while the others contained multiple domains measured by a magnetic force microscope (MFM). However, the domain structure of nano-magnetites calculated from SQUID data showed that all were pseudo-single domains. This suggested that the MFM may be a precise tool to determine magnetic structures. Moreover, the crystal morphology of nano-magnetites affected magnetic properties owing to different magnetic-domain structures.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Y.H. Chen, J.F. Zhang,