Article ID Journal Published Year Pages File Type
5457684 Intermetallics 2017 7 Pages PDF
Abstract
Clinical applications require porous biomaterials, however, higher porosity levels and hydroxyapatite (HA) content hampers the mechanical properties like superelasticity. Here, a functional-structural composite consisting of a central NiTi shape memory alloy core with an outer macro-porous NiTi/HA layer was fabricated by spark plasma sintering (SPS). The central NiTi alloy provides desirable mechanical properties like high strength and superelasticity, while the outer layer with controllable pore size and bioactive HA, which strongly boosts the bioactivity. This work might provide a strategy for designing and fabricating multifunctional biocompatible materials that could be promising for bone implants.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , , , , , ,