Article ID Journal Published Year Pages File Type
5457823 International Journal of Refractory Metals and Hard Materials 2017 19 Pages PDF
Abstract
In this work, the bimodal WC-Co coatings were sprayed by high-velocity oxygen-fuel (HVOF), and the conventional WC-Co coatings were also fabricated for comparison. The microstructure, mechanical properties and high temperature wear performance were investigated. The bimodal WC-Co coating presented denser structure (porosity lower than 1.0%), higher average hardness (1164 HV0.1) and fracture toughness (11.5 ± 1.4 MPa·m1/2) than that of conventional coating. The Weibull analysis of microhardness data of the bimodal coating presents a mono-modal distribution. The friction coefficient and wear rate of the bimodal coating were 0.61 and 2.96 × 10− 6 mm3·N− 1·m− 1, respectively, which is lower than that of conventional coating at the test temperature of 450 °C. The tribofilm could be formed on the worn surface of bimodal WC-Co coating, which is composed of WO3 and CoWO4. The formation of tribofilm could reduce friction and wear.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , ,