Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5457886 | International Journal of Refractory Metals and Hard Materials | 2017 | 6 Pages |
Abstract
The microstructure and mechanical properties of 316 L and 430 L stainless steel bonded NbC cermets were assessed. NbC starting powder mixtures with 15 and 30 vol% steel binder were pressureless vacuum sintered for 1 h at 1420 °C. The liquid forming temperature and shrinkage behaviour of the green powder compacts were investigated by differential scanning calorimetry and dilatometry. Microstructural and compositional analysis were conducted by electron probe microanalysis (EPMA) and XRD to investigate the effect of the steel binder on NbC grain growth and Cr-rich carbide precipitation. Rapid NbC grain growth was observed and the average NbC grain size decreased with increasing binder content. The residual Cr-rich carbide located at NbC grain boundaries can be eliminated by the addition of carbide forming metal precursors such as TiH2 or by a thermal annealing process of the sintered NbC cermets at 1200 °C. The hardness and fracture toughness of the NbC-steel cermets was influenced by the steel binder type and content. A maximum hardness of 13.6 GPa was measured for the NbC-15 vol% 430 L cermet, combined with a modest fracture toughness of 7.3 MPa m1/2.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
S.G. Huang, J. Vleugels, H. Mohrbacher,