Article ID Journal Published Year Pages File Type
5457932 International Journal of Refractory Metals and Hard Materials 2017 9 Pages PDF
Abstract
In this study, different geometric micro-textured ceramic tools (MST-0, MST-1, MST-2) are designed using the software AdvantEdge (AE). The designed tools are used to perform FEM (finite element modelling) simulation of the cutting process. The simulation results show that, compared with the traditional non-texture tool (MST-0), applying the appropriate shape and size of micro-texture to ceramic cutting tools can significantly reduce the cutting force, decrease the cutting temperature and improve the cutting performance of the tool. Additionally, an experimental study was conducted that involved the fabrication of hot-pressing sintered micro-textured self-lubricating ceramic tools (MST-1, MST-2) by means of in-situ forming method. Furthermore, cutting tests to compare the cutting performance of the micro-textured self-lubricating ceramic tools with the traditional non-textured tool (MST-0) were performed. The results indicate that the in-situ formed micro-textured ceramic cutting tools can effectively reduce the cutting force, the cutting temperature, and the rake face wear. During the cutting process, the abrasive grain of graphite that is placed into the micro-texture by in-situ forming is squeezed into the microstructure. Thus, the graphite overflows from the microstructure under abrasive grains and covers the rake face. This helps to reduce the friction between the chip and the rake face, which further reduces the cutting force and temperature, and improves the cutting performance of the tools. The texture pattern orientation of the micro-texture also affects the cutting performance of the tool. It is found that the best cutting performance is obtained by the transverse micro-texture tool.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , ,