Article ID Journal Published Year Pages File Type
5458647 Journal of Alloys and Compounds 2017 30 Pages PDF
Abstract
Doping of rare earth elements such as Dy3+ into ZnO lattice can modify the luminescence properties. Dy3+ ions exhibit emissions in the visible region. The preparation of Dy3+ doped ZnO films with bright visible luminescence is of importance for luminescent device applications. In this study, highly textured, c-axis oriented, transparent, luminescent Dy3+ doped ZnO films are prepared using RF magnetron sputtering. The structural, morphological, optical and luminescent properties of the as-deposited films are investigated as a function of Dy3+ doping concentration. The structural analysis of the films carried out using X-ray diffraction and micro-Raman studies reveal the formation of hexagonal wurtzite ZnO phase in the films. All the films present smooth surface morphology consisting of dense distribution of grains with well-defined grain boundaries. The elemental analysis carried out using energy dispersive X-ray (EDX) spectra confirms the incorporation of Dy3+ ions in the ZnO lattice. The high transmittance of Dy3+doped ZnO films in the visible range with a sharp absorption edge shows good optical quality of the films. The visible luminescence observed ∼580 nm in the Dy3+ doped ZnO films can be attributed to theF924→H1326 transition of Dy3+ ions, suggesting the suitability of these films for luminescent device applications.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , , , , ,