Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5466086 | Thin Solid Films | 2017 | 46 Pages |
Abstract
Micro solid oxide fuel cells (μ-SOFC) were manufactured with perovskite type proton conductors on silicon substrates and with structured Pt-grid electrodes. In order to miniaturize the μ-SOFCs and to shorten the ion path through the electrolyte, the thin film proton conductors were only ~ 510 nm thick. The thin films consist of 10 mol% yttrium-doped BaZrO3 (BZY10) and they were deposited by means of chemical solution deposition (CSD). CSD was applied, because it represents a highly attractive fabrication method, considering the relatively low investment costs and flexibility with regard to stoichiometry. The backsides of the μ-SOFCs on the substrates were opened by wet chemical and plasma etching to form the freestanding membranes. The completed μ-SOFCs resist up to a temperature of 450 °C. Their electrical properties, such as permittivity, and resistivity were investigated. By means of electrochemical impedance spectroscopy (EIS) in the temperature range of 100 °C to 450 °C, the resistivity properties and the activation energies of the model μ-SOFC were studied with humid hydrogen in nitrogen at the anode and different oxygen partial pressures at the cathode. The results provide a clear hint for a dominating protonic defect transport mechanism in the electrolyte. In the 450 °C measurement, the model μ-SOFCs reached an open circuit voltage of 600 mV with 100% oxygen at the cathode and humid hydrogen in nitrogen at the anode.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Nanotechnology
Authors
J. Engels, D. Griesche, R. Waser, T. Schneller,