Article ID Journal Published Year Pages File Type
5467560 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2017 5 Pages PDF
Abstract
Silicon carbide fiber-reinforced silicon carbide matrix composites have been investigated for their use as structural materials for advanced nuclear reactor. Although quite a number of researches have been devoted to probe the effects of irradiation on various properties of the composites, there is little known about the atomistic mechanism for irradiation resistance. In this study, a two-temperature model has been used to investigate the irradiation damage of SiC/Gra/SiC composites, which includes three parts and two SiC/C interfaces, two single crystal cubic silicon carbide on two sides and a few graphene sheets in the middle part. By simulating 100 keV displacement cascades, we find that the number of defects in the reinforcement is larger than that in the matrix, which indicates the damage in the reinforcement is more serious than that in the matrix. Moreover, we explicitly investigate the damage behavior of the interphase graphene layers and find that some atoms in one graphene sheet form many new chemical bonds with atoms in another one, which leads to the transition from sp2 to sp3 hybridization. The newly formed chemical bonds link the different graphene layers and make graphene-like electronic structure more “diamond-like”, enhancing the irradiation resistance of the matrix.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , ,