Article ID Journal Published Year Pages File Type
5467574 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2017 5 Pages PDF
Abstract
The lattice disorders induced by He-ion implantation in GaN epitaxial films to fluences of 2 × 1016, 5 × 1016 and 1 × 1017 cm−2 at room temperature (RT) have been investigated by a combination of Raman spectroscopy, high-resolution X-ray diffraction (HRXRD), nano-indentation, and transmission electron microscopy (TEM). The experimental results present that Raman intensity decreases with increasing fluence. Raman frequency “red shift” occurs after He-ion implantation. Strain increases with increasing fluence. The hardness of the highly damaged layer increases monotonically with increasing fluence. Microstructural results demonstrate that the width of the damage band and the number density of observed dislocation loops increases with increasing fluence. High-resolution TEM images exhibit that He-ion implantation lead to the formation of planar defects and most of the lattice defects are of interstitial-type basal loops. The relationships of Raman intensity, lattice strain, swelling and hardness with He-implantation-induced lattice disorders are discussed.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , , , , , , , , , , , , , , ,