Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5467593 | Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms | 2017 | 8 Pages |
Abstract
The irradiation behaviors and corrosion properties of a modified N36 zirconium alloy with the composition of Zr-0.8Sn-1Nb-0.3Fe, developed by Nuclear Power Institute of China, were investigated by transmission electron microscopy and focused ion beam. The polished samples were irradiated by 400 keV Kr+ ions up to 25 dpa at 360 °C using a NEC 400 kV ion implanter. The as-received and irradiated samples were corroded for 14 days at the water-vapor environment with 10.3 MPa and 400 °C. The krypton gas bubbles were formed in zirconium matrix and their size was increased with increasing ion dose. Meanwhile, a model that related with gas bubble size and displacement damage had been established. After the corrosion, a layer composed of zircona with different stoichiometric composition was formed on the sample surface. The higher the displacement damage was, the thicker the corrosion layer would be. An empirical equation between oxide thickness and displacement damage was provided. From sample surface to matrix inner, the oxygen content was decreased with increasing corrosion depth. Correspondingly, the zircona was changed from ZrO2 with monoclinic structure on the sample surface to the mixtures of ZrO2 with tetragonal structure and ZrO2 with monoclinic structure in the middle of corrosion layer, and then to ZrO2 with tetragonal structure near alloy matrix.
Related Topics
Physical Sciences and Engineering
Materials Science
Surfaces, Coatings and Films
Authors
Penghui Lei, Guang Ran, Chenwei Liu, Qiang Shen, Ruiqian Zhang, Chao Ye, Ning Li, Peihua Yang, Yungchun Yang,