Article ID Journal Published Year Pages File Type
5467910 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2017 8 Pages PDF
Abstract
The present study focuses on the electronic excitation induced structural and optical properties of InGaN/GaN quantum well (QW) structures grown by metal organic chemical vapor deposition technique. These excitations were produced using Au7+ ion irradiation with 100 MeV energy. The X-ray rocking curves intensity and full width at half-maximum values corresponding to the planes of (0 0 0 2) and (1 0 −1 5) of the irradiated QW structures show the modifications in the screw and edge-type dislocation densities vary with the ion fluences. The structural characteristics using the reciprocal space mapping indicate the intermixing effects in InGaN/GaN QW structures. Atomic force microscopy images confirmed the presence of nanostructures and the surface modification due to heavy ion irradiation. The irradiated QW structures exhibited degraded photoluminescence intensity and a subsequent decrease in the yellow luminescence band intensity with the fluences of 1 × 1011 and 5 × 1012 ions/cm2 compared to the pristine QW structures.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , , , ,