Article ID Journal Published Year Pages File Type
5468790 Applied Clay Science 2016 10 Pages PDF
Abstract
An extended reference fluid density approach/weighted correlation approximation (RFD/WCA) of density functional theory (DFT) for size-asymmetric electrolytes presented in part I is applied to calculate the forces and the ion exchange for Ca- and Na-montmorillonite systems in equilibrium with salt solutions. Our modeling shows that the DFT calculations are in excellent agreement with Monte Carlo simulations and experimental results. The results indicate that the ion size plays an important role in force-distance relation. Due to the excluded volume effect, the osmotic pressure curve predicted by DFT is shifted towards larger separation distances with increasing the diameter of counterions. Additionally, the interaction can be switched from attraction to repulsion with increasing diameter of counterions from standard to hydrated ionic size. Furthermore, the quantitative characterization of the exchange of calcium for sodium at room temperature on Wyoming bentonite is investigated with the DFT modeling in aqueous solutions at pH 7.0. It is found that a significant variation of the selectivity coefficient could be observed with the surface charge density, ionic diameter and interlayer separations. This implies that ion selectivity in compacted bentonite differs from that in dilute smectite dispersions.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,