Article ID Journal Published Year Pages File Type
5469706 Procedia CIRP 2016 4 Pages PDF
Abstract
Machining vibration is one of the most important reasons that influences the tool life, machining efficiency and the final surface quality, the performance and the reliability of aero-engine is affected directly by compressor blades. To restrain machining vibration of compressor blade in multi-axis machining, the mechanism of vibration and milling force during machining thin-walled blades is analyzed. A model of machining vibration and a vibration differential equation are established. Response function of blade reflects that the amplitude is influenced by clamping stiffness of blade, the natural frequency and damping of blade-fixture system. The paper presents a method of tension clamping to increase stiffness and natural frequency of system. Experiments show that the method can reduce clamping deformation, increase blade stiffness and natural frequency of blade-fixture system. It can reduce machining vibration eventually.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,