Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5470736 | Applied Mathematical Modelling | 2017 | 32 Pages |
Abstract
In this paper, a two-degree-of-freedom (namely, plunge and pitch) aeroelastic typical section with shape memory alloy helical springs in the pitch degree-of-freedom is modeled. A linear aerodynamic model is employed to predict the unsteady loads. The shape memory springs model is based on classical models modified by the von Mises pure shear assumption. Nonhomogeneous distributions of shear strain, shear stress and martensitic fraction in the wire cross-section are represented by axi-symmetric annular regions. The numerical predictions of the effects of pseudoelastic hysteresis of shape memory alloy springs on the aeroelastic behavior of the typical section when both the homogeneous and nonhomogeneous cross-sectional distributions are considered in the simulations are compared with experimental data obtained in wind tunnel tests. The nonhomogeneous assumption results in good agreement between numerical predictions and experiments. Both the numerical and experimental results show that the pseudoelastic hysteresis of SMAs can be employed as a passive alternative to modify the behavior of aeroelastic systems.
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
Vagner Candido de Sousa, Carlos De Marqui Junior, Mohammad Elahinia,