Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5470790 | Applied Mathematical Modelling | 2017 | 53 Pages |
Abstract
Transient-state gas and oil-based mud (OBM) two-phase flow in wellbore annuli will occur during gas kick. The phase behavior of influx gas and OBM will make the gas kick during OBM drilling more complicated. There are three possible cases in an annulus: only liquid flow in the entire annulus, gas and liquid two-phase flow in part of the annulus, and gas and liquid two-phase flow in the entire annulus. First, the phase behaviors of gas and OBM in wellbore annuli are studied based on the phase behavior of methane and diesel. A multiphase transient-flow model in annuli during gas kick based on OBM is then established based on gas-liquid two-phase flow theory and on flash theory in annuli. The influences of phase behavior in annuli and annular geometry are taken into account. The local flow parameters are predicted by the hydrodynamic models and the local thermodynamic parameters are predicted by the heat-transfer models in the corresponding flow pattern. The proposed model has a better performance, compared with two other models, against the published experimental data. Finally, the variation of pit gain, well-bottom hole pressure, and gas void fraction are obtained, leading to a better understanding of the occurrence and evolution mechanism of gas kick during deepwater drilling.
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
Yin Bangtang, Liu Gang, Li Xiangfang,