Article ID Journal Published Year Pages File Type
5470933 Applied Mathematical Modelling 2017 33 Pages PDF
Abstract
The type-2 U-shaped assembly line balancing problem is important for many just-in-time manufactures, but an efficient algorithm is not available at present. Thus, in this study, a novel heuristic approach based on multiple rules and an integer programming model is proposed to address this problem. In the proposed approach, three rules are systematically grouped together, i.e., task selection, task assignment, and task exchange rules. The sufficient conditions for implementing the exchange rules are proposed and proved. Thirteen small or medium scale benchmark issues comprising 63 instances were solved, where the computational results demonstrate the efficiency and effectiveness of the proposed method compared with integer programming. The computational results obtained for 18 examples comprising 121 instances demonstrate that the task exchange rules significantly improve the computational accuracy compared with the traditional heuristic. Finally, 30 new standard instances produced by a systematic data generation process were also solved effectively by the proposed approach. The proposed heuristic approach with multiple rules can provide a theoretical basis for other local search algorithms, especially for addressing issues such as the U-Shaped assembly line balancing problem.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , , ,