Article ID Journal Published Year Pages File Type
5470942 Applied Mathematical Modelling 2017 23 Pages PDF
Abstract
Predicting the horizontal groundwater flow in unsaturated porous media is a challenge in many areas of science and engineering. The governing equation associated with this phenomenon is a nonlinear partial differential equation known as the Richards equation. However, the numerical results obtained using this equation can differ substantially from the experimental results. In order to overcome this difficulty, a new version of the Richards equation was proposed recently that considers a time derivative of fractional order. In this study, we present a numerical method for solving this fractional Richards equation. Our method comprises an adaptive time marching scheme that uses Picard iterations to solve the corresponding nonlinear equations. A computational code was implemented for the proposed method using the Scilab programming language. We performed numerical simulations of the anomalous diffusion of water in a white siliceous brick and showed that the numerical results were consistent with the available experimental data.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,