Article ID Journal Published Year Pages File Type
5471081 Applied Mathematical Modelling 2017 11 Pages PDF
Abstract
In the paper, we propose and analyze a mathematical model of the continuous ethanol fermentation process to study the mechanisms of the self-sustained oscillations of ethanol concentration. The model is based on the assumption that microorganism cells response to the inhibitory effect of product (ethanol) concentration with a delay. From the local stability analysis of the system, we show that the delay time is one of the crucial factors for the occurrence of oscillations and for a critical delay time the fermentation process undergoes a Hopf bifurcation. Further analysis shows that the operating variables and kinetic parameters have also a significant effect on the dynamical behavior of the fermentation system. A proper manipulation of the operating variables allow us to eliminate the oscillatory behavior.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,