Article ID Journal Published Year Pages File Type
5471167 Applied Mathematical Modelling 2017 28 Pages PDF
Abstract
An integrated producer-buyer supply chain is used to simultaneously determine the optimum levels of the safety stock, delivery quantity, and number of shipments in this paper. The scenario is created by scheduling a single-setup at the producer with multiple deliveries to the buyer, and all shipments to the buyer are equal-sized batches. This study attempts to study the effects of delivery cost and transportation time, assumes that there is a stochastic transportation time between both producer and buyer, and that shortages are allowed. The transportation time is assumed to be Weibull distributed. The objective functions of the integrated model include the setup cost, inventory carrying cost, and delivery cost. We analyze the scenario where the delivery cost is explicitly considered in the model rather than considered as part of the fixed ordering cost or insignificant. A numerical example is also presented to demonstrate the proposed model using actual shipping rate data. In particular, the results show that when the producer's and buyer's carrying costs are low, and/or the mean time of transportation and delivery costs are high, then this can benefit both parties with regard to sharing total profit.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,