Article ID Journal Published Year Pages File Type
5471204 Applied Mathematical Modelling 2017 17 Pages PDF
Abstract
This paper proposes a new hybrid uncertain design optimization method for structures which contain both random and interval variables simultaneously. The optimization model is formulated with the feasible robustness and the reliability of the worst scenario. The hybrid uncertainty is quantified by using the orthogonal series expansion method that integrates the Polynomial Chaos (PC) expansion method and the Chebyshev interval method within a uniform framework. The design sensitivity of objective and constraints will be developed to greatly facilitate the use of gradient-based optimization algorithms. The numerical results show that this method will be more possible to seek the feasible solution.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,