Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5471207 | Applied Mathematical Modelling | 2017 | 26 Pages |
Abstract
Images captured by image acquisition systems using photon-counting devices such as astronomical imaging, positron emission tomography and confocal microscopy imaging, are often contaminated by Poisson noise. Total variation (TV) regularization, which is a classic regularization technique in image restoration, is well-known for recovering sharp edges of an image. Since the regularization parameter is important for a good recovery, Chen and Cheng (2012) proposed an effective TV-based Poissonian image deblurring model with a spatially adapted regularization parameter. However, it has drawbacks since the TV regularization produces staircase artifacts. In this paper, in order to remedy the shortcoming of TV of their model, we introduce an extra high-order total variation (HTV) regularization term. Furthermore, to balance the trade-off between edges and the smooth regions in the images, we also incorporate a weighting parameter to discriminate the TV and the HTV penalty. The proposed model is solved by an iterative algorithm under the framework of the well-known alternating direction method of multipliers. Our numerical results demonstrate the effectiveness and efficiency of the proposed method, in terms of signal-to-noise ratio (SNR) and relative error (RelRrr).
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
Jun Liu, Ting-Zhu Huang, Xiao-Guang Lv, Si Wang,