Article ID Journal Published Year Pages File Type
5471356 Applied Mathematical Modelling 2017 16 Pages PDF
Abstract
A biofilm is usually defined as a layer of bacterial cells anchored to a surface. These cells are embedded into a polymer matrix that keeps them attached to each other and to a solid surface. Among a large variety of biofilms, in this paper we consider batch cultures. The mathematical model is formulated in terms of a quasilinear system of diffusion-reaction equations for biomass and nutrients concentrations, which exhibits possible degeneracy and singularities in the nonlinear diffusion coefficient. In the present paper, we propose a set of efficient numerical methods that speeds up the solution of the model. Mainly, Crank-Nicolson finite differences techniques for discretisation are combined with a Newton algorithm for the nonlinearities. Moreover, some numerical examples show the expected behaviour of the biomass and nutrients concentrations and also clearly illustrate some theoretically proved qualitative properties related to exponential decays or convergence to a critical biomass concentration depending on the values of the model parameters.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,