Article ID Journal Published Year Pages File Type
5471472 Applied Mathematical Modelling 2016 16 Pages PDF
Abstract
The present work deals with a theoretical investigation on free vibration of composite circular cylindrical shells containing fluid. A new precise analytical model using the Dynamic Stiffness Method (DSM) or Continuous Elements (CEM) based on the Reissner-Mindlin theory and non-viscous incompressible fluid equations has been proposed for the studied structures. Numerical examples are given for analyzing natural frequencies and harmonic responses of clamped-free cylindrical shells partially and completely filled with fluid. To compare with the theoretical results, some experimental results have been obtained on the free vibration of a clamped-free glass fiber/polyester cylindrical shells partially filled with water by using a multi-vibration measuring machine (DEWEBOOK-DASYLab 5.61.10). Results calculated by the proposed computational model for studied composite cylindrical shells are in good agreement with experiments.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,