Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5471749 | Applied Mathematics Letters | 2017 | 7 Pages |
Abstract
In this letter, we present a computational framework based on the use of the Newton and level set methods and tailored for the modeling of bubbles with surface tension in a surrounding Newtonian fluid. We describe a fully implicit and monolithic finite element method that maintains stability for significantly larger time steps compared to the usual explicit method and features substantial computational savings. A suitable transformation avoids the introduction of an additional mixed variable in the variational problem. An exact tangent problem is derived and the nonlinear problem is solved by a quadratically convergent Newton method. In addition, we consider a generalization to the multidimensional case of the Kou's and McDougall's methods, resulting in a faster convergence. The method is benchmarked against known results with the aim of illustrating its accuracy and robustness.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
Aymen Laadhari,