Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5472079 | Acta Astronautica | 2017 | 20 Pages |
Abstract
In many types of space mission there is a constant desire for larger and larger instrument apertures, primarily for the purposes of increased resolution or sensitivity. In the Radio Frequency domain, this is currently addressed by antennas that unfold or deploy on-orbit. However, in the optical and infrared domains, this is a significantly more challenging problem, and has up to now either been addressed by simply having large monolithic mirrors (which are fundamentally limited by the volume and mass lifting capacity of any launch vehicle) or by complex 'semi-folding' designs such as the James Webb Space Telescope. An alternative is to consider a fractionated instrument which is launched as a collection of individual smaller elements which are then assembled (or self-assemble) once in space, to form a much larger overall instrument. SSTL has been performing early concept assessment work on such systems for high resolution science observations from high orbits (potentially also for persistent surveillance of Earth). A point design of a 25Â m sparse aperture (annular ring) telescope is presented. Key characteristics of 1) multiple small elements launched separately and 2) on-orbit assembly to form a larger instrument are included in the architecture. However, on-orbit assembly brings its own challenges in terms of guidance navigation and control, robotics, docking mechanisms, system control and data handling, optical alignment and stability, and many other elements. The number and type of launchers used, and the technologies and systems used heavily affect the outcome and general cost of the telescope. The paper describes one of the fractionated architecture concepts currently being studied by SSTL, including the key technologies and operational concepts that may be possible in the future.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Aerospace Engineering
Authors
Chris Saunders, Dan Lobb, Martin Sweeting, Yang Gao,