Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5472137 | Acta Astronautica | 2017 | 28 Pages |
Abstract
To improve the bonding strength of carbon/carbon (C/C) composites and GH3044 nickel-based superalloy, the bonding interlayer with Ti/Ni/Cu/Ni multiple foils were prepared by a two-step technique involving micro-oxidation and partial transient liquid phase (PTLP) process. Interface characteristics and mechanical behavior of joints were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), laser scanning confocal microscope (LSCM) and energy X-ray dispersive spectrometer (EDS). Results show that a porous layer on C/C composites is formed by micro-oxidation for more than 2 min at 1073 K in air, which provides a diffusion path for liquid phase to infiltrate into C/C substrate and generate a wedge interlocking interface. After micro-oxidation for 4 min, the shear strength of joints reaches 32.09 ± 1.98 MPa what is 36.73% higher than that of joints without micro-oxidation (23.47 ± 1.15 MPa). The increase of shear strength remarkably depends on physical interlocking and chemical bonding at porous interface.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Aerospace Engineering
Authors
Xiaohong Shi, Xiuxiu Jin, Ningning Yan, Li Yang,