Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5472508 | Acta Astronautica | 2017 | 8 Pages |
Abstract
A Mathematical model is developed for investigating the heat and mass transfer of magnetohydrodynamic Casson fluid over a moving wedge with slip, nonlinear thermal radiation, uniform heat source/sink and chemical reaction. For regulating the momentum and concentration gradients we also considered the viscous dissipation and cross diffusion effects. Numerical solutions are carried out by employing Runge-Kutta and Newton's methods. The effects of the physical governing factors on the flow, temperature and concentration profiles are illustrated graphically for accelerating and decelerating flow cases. We also computed the local Nusselt and Sherwood numbers along with friction factor for the same cases. It is found that increasing the temperature jump parameter encourages the heat transfer rate. It is also concluded that the local Nusselt number is high in accelerating flow case when equated with the decelerating flow case.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Aerospace Engineering
Authors
C.S.K. Raju, N. Sandeep,