Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5473257 | Applied Ocean Research | 2017 | 10 Pages |
Abstract
Offshore pipelines operating under high pressure and temperature are subjected to upheaval buckling. Pipeline behaviour in upheaval buckling depends on a number of factors including the shape of pipeline imperfection, installation stresses, loading types, seabed sediment behaviour and the flexural stiffness of the pipe. Current method of predicting upheaval buckling is based on simplified shapes of pipeline imperfection developed for idealized seabed conditions. To account for the effect of internal pressure, the pressure load is represented using an equivalent temperature. However, the applicability of these idealizations on the prediction of upheaval buckling has not been well-investigated. In this paper, the three-dimensional finite element modelling technique is used to investigate the applicability of idealized shapes and their effects on the upheaval buckling of pipeline for a seabed condition at offshore Newfoundland in Canada. The finite element model is then used to conduct a parametric study to investigate the effects of installation stress, loading types, seabed parameters and the flexural stiffness of the pipe. Finally, a design chart is developed to determine the optimum height of seabed features to manage pipeline stability against upheaval buckling under different temperature and pressure loadings.
Related Topics
Physical Sciences and Engineering
Engineering
Ocean Engineering
Authors
Bipul Chandra Mondal, Ashutosh Sutra Dhar,