Article ID Journal Published Year Pages File Type
5473308 Applied Ocean Research 2017 12 Pages PDF
Abstract
This study presents an analysis of a wave energy converter (WEC) system consisting of a buoy, a mooring system, and a power cable connected to a hub. The investigated WEC system is currently under full-scale testing near Runde in Norway. The purpose of the study was to investigate the characteristics of the entire system, primarily with regard to energy performance and the fatigue life of the mooring lines and power cable, considering the effects of marine biofouling and its growth on the system's components. By means of parametric study, the energy performance and fatigue life of the mooring lines and power cable were investigated considering two mooring configurations, three biofouling conditions, four sea states in a scatter diagram, and three wave and current directions. Hydrodynamic and structural response simulations were conducted in a coupled response analysis using the DNV-GL software SESAM. Energy performance analyses and stress-based rainflow counting fatigue calculations were performed separately using an in-house code. The results show that, for a WEC system which has been deployed for 25 years, biofouling can reduce the total power absorption by up to 10% and decrease the fatigue life of the mooring lines by approximately 20%.
Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, , , ,