Article ID Journal Published Year Pages File Type
5476262 Energy 2017 13 Pages PDF
Abstract
Extreme learning machine (ELM), which is a simple single-hidden-layer feed-forward neural network with fast implementation, has been widely applied in many engineering fields. However, it is difficult to enhance the modeling ability of extreme learning in disposing the high-dimensional noisy data. And the predictive modeling method based on the ELM integrated fuzzy C-Means integrating analytic hierarchy process (FAHP) (FAHP-ELM) is proposed. The fuzzy C-Means algorithm is used to cluster the input attributes of the high-dimensional data. The Analytic Hierarchy Process (AHP) based on the entropy weights is proposed to filter the redundant information and extracts characteristic components. Then, the fusion data is used as the input of the ELM. Compared with the back-propagation (BP) neural network and the ELM, the proposed model has better performance in terms of the speed of convergence, generalization and modeling accuracy based on University of California Irvine (UCI) benchmark datasets. Finally, the proposed method was applied to build the energy saving and predictive model of the purified terephthalic acid (PTA) solvent system and the ethylene production system. The experimental results demonstrated the validity of the proposed method. Meanwhile, it could enhance the efficiency of energy utilization and achieve energy conservation and emission reduction.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,