Article ID Journal Published Year Pages File Type
5477092 Energy 2017 13 Pages PDF
Abstract
Direct use of geothermal energy can present challenges of financial feasibility in a low-enthalpy setting. The average temperature gradients in sedimentary basins make it necessary to reach larger depths for meaningful heat production, thus increasing the drilling cost. Therefore, full realization of geothermal projects in low-enthalpy environments has been difficult and not widely deployed. The concept of harvesting the positive temperature anomalies caused by the increased heat conductivity of salt bodies could enable access to higher temperatures at a shallower depth, thus reducing the necessary depth of drilling. In a potential site in NE Netherlands, temperature differences of up to 25 °C close to the top of a salt body are modeled. Substantiating this concept we show that the energetic benefits can result to up to 40% more energy extracted, while the temperature recovery of the field is only prolonged by 13%. This opens up new possibilities for geothermal applications in sedimentary basins.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, ,