Article ID Journal Published Year Pages File Type
5477583 Journal of Environmental Radioactivity 2017 10 Pages PDF
Abstract
In the framework of the VATO project, the model has been tested against two-year-long in situ measurements of 3H activity concentration monitored by IRSN in air, groundwater and grass, together with meteorological parameters, on a grass field plot located 2 km downwind of the AREVA NC La Hague nuclear reprocessing plant, as was done in the past for the evaluation of transfer of 14C in grass. By considering fast exchanges at the vegetation-air canopy interface, the model correctly reproduces the observed variability in TFWT activity concentration in grass, which evolves in accordance with spikes in atmospheric HTO activity concentration over the previous 24 h. The average OBT activity concentration in grass is also correctly reproduced. However, the model has to be improved in order to reproduce punctual high concentration of OBT activity, as observed in December 2013. The introduction of another compartment with a fast kinetic (like TFWT) - although outside the model scope - improves the predictions by increasing the correlation coefficient from 0.29 up to 0.56 when it includes this particular point. Further experimental investigation will be undertaken by IRSN and EDF next year to better evaluate (and properly model) other aspects of tritium transfer where knowledge gaps have been identified in both experimental and modelling areas.
Keywords
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , , , , , , , , , ,