Article ID Journal Published Year Pages File Type
5479309 Journal of Cleaner Production 2017 9 Pages PDF
Abstract
Global marine shipping annually accounts for about one billion tonnes of CO2 equivalent greenhouse gas emissions. Nuclear power propulsion may be an option to de-carbonise some niches of the merchant ocean fleet. This paper considers the three experimental nuclear-powered merchant ships launched and operated in the world so far; the iconic Savannah (USA), Otto Hahn (West Germany) and Mutsu (Japan). They were independently developed and operated in the 1960s and 1970s for technology demonstration and learning. A fourth ship, Sevmorput (Soviet Union/Russia, 1988-to date), is a pioneer in respect of its logistics functions and propulsion system. This paper develops a theoretical framework for the sustainability assessment of nuclear propulsion in ocean merchant shipping and presents a method for exploring nuclear propulsion, relative to flag state, ports, shipping resources and ocean transport services. The experimental ships' transport efficiency is discussed and related to contemporary oil-fired shipping of general cargo, and to recent literature presenting possible future applications of merchant nuclear propulsion in some market niches. Insights provided include: (1) the experiments demonstrate that merchant nuclear propulsion may be technically feasible; (2) port and canal access for merchant nuclear-powered ships may be difficult and restricted; (3) the up-front costs, refuelling and end-of-life decommissioning costs of nuclear-powered ships are vast and uncertain against conventionally-powered ships; (4) because nuclear fuel is comparatively low-cost, the conventional oil-fired ship cost implications of high-speed operations do not apply.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,