Article ID Journal Published Year Pages File Type
5481290 Journal of Cleaner Production 2017 7 Pages PDF
Abstract
The difficulties for selective metal recovery from electronic waste are induced by the high complexity of such waste stream and complicated purification procedures. In this research, an electrochemical stimulated method is demonstrated to selective recover copper from an industrially provided electronic waste. More specific, one-step selective copper recovery was achieved by combining electrochemical dissolution and deposition in ammonia-based electrolyte. In the process, copper instead of other impure metals from the electronic waste is selectively dissolved and electrochemically enhanced at the anode. On the other side of the cell, pure copper was electrodeposited at the cathode. The current efficiency was found to be significantly influenced by the applied current density if galvanostatic process was facilitated. Both temperature and copper concentration in the electrolyte were found to have positive effects on the current efficiency. In a well-controlled process, copper of 99.56 wt% purity can be obtained which can be further improved by preventing potential oxidation on the electrodeposited layer. This research provide a possibility for selective copper recovery in one-step by substantially decreasing the purification cost and simplifying copper recovery procedures from electronic waste.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , , ,