Article ID Journal Published Year Pages File Type
5483390 Renewable and Sustainable Energy Reviews 2017 9 Pages PDF
Abstract
The detailed study of latent packed bed thermal energy storage (TES) system has been a great topic of interest in the literature. Experimental measurements have been conducted to analyze the performance of these systems, however, the complex transient nature of latent TES makes necessary the use of numerical models for detailed study and evaluation of key design parameters, which lead to a numerous scientific contributions in the field. Different and diverse numerical models have been developed, which can be mainly divided into single phase models, Schumman's model, concentric dispersion model, and continuous solid phase model. This paper provides an extensive comprehensive revision of the different numerical models, highlighting the key aspects of each one as well as the main findings in the field. Furthermore, the performance of the different methodologies are discussed and compared. The most important empirical correlations used in the different models in order to take into account physics, such as natural convection inside the spheres or effective thermal conductivity of heat transfer fluid, are also given.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,