Article ID Journal Published Year Pages File Type
5483698 International Journal of Coal Geology 2016 8 Pages PDF
Abstract
The major findings of this preliminary work indicate that the isotopic signatures of δ13C (relative to the Vienna Pee Dee Belemnite scale, VPDB) of CO2 resulting from coal combustion are similar to the δ13CVPDB signature of the bulk coal (− 28.46 to − 23.86 ‰) and are not similar to atmospheric δ13CVPDB of CO2 (~ − 8 ‰, see http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html). The δ18O values of bulk coal are strongly correlated to the coal dry ash yields and appear to have little or no influence on the δ18O values of CO2 resulting from coal combustion in open atmospheric conditions. There is a wide range of δ13C values of coal reported in the literature and the δ13C values from this study generally follow reported ranges for higher plants over geologic time. The values of δ18O (relative to Vienna Standard Mean Ocean Water) of CO2 derived from atmospheric combustion of coal and other high-carbon fuels (peat and coal) range from + 19.03 to + 27.03‰ and are similar to atmospheric oxygen δ18OVSMOW values which average + 23.8‰. Further work is needed on a broader set of samples to better define the relationships between coal composition and combustion-derived gases.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, ,