Article ID Journal Published Year Pages File Type
5486314 Advances in Space Research 2017 14 Pages PDF
Abstract
Orbit maneuver via tether is a promising countermeasure for space debris removal and satellite orbit transfer. A space tethered towing method is explored that utilizes thrust to fulfill transfer and bounded tension to stabilize tether heading. For this purpose, a time-energy optimal orbit is designed by Gauss pseudospectral method. The theoretical attitude commands are obtained by equilibria analysis. An effective attitude control strategy is presented where the commands are optimized first and then feedback controller is designed. To deal with the underactuated problem with tension constraint, hierarchical sliding mode theory is employed and an adaptive anti-windup module is added to mitigate the actuator saturation. Simulation results show that the target is towed effectively by the thrusts, and a smooth tracking for the commands of tether length and in-plane tether heading is guaranteed by the bounded tension. In addition, the designed controller also presents appreciable robustness to model error and determination error.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , ,