Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5486734 | Advances in Space Research | 2017 | 11 Pages |
Abstract
The differential code bias (DCB) of BeiDou satellite is an important topic to make better use of BeiDou system (BDS) for many practical applications. This paper proposes a new method to estimate the BDS satellite DCBs based on triple-frequency uncombined precise point positioning (UPPP). A general model of both triple-frequency UPPP and Geometry-Free linear combination of Phase-Smoothed Range (GFPSR) is presented, in which, the ionospheric observable and the combination of triple-frequency satellite and receiver DCBs (TF-SRDCBs) are derived. Then the satellite and receiver DCBs (SRDCBs) are estimated together with the ionospheric delay that is modeled at each individual station in a weighted least-squares estimator, and the satellite DCBs are determined by introducing the zero-mean condition of all available BDS satellites. To validate the new method, 90Â day's real tracking GNSS data (from January to March in 2014) collected from 9 Multi-GNSS Experiment (MGEX) stations (equipped with Trimble NETR9 receiver) is used, and the BDS satellite DCB products from German Aerospace Center (DLR) are taken as reference values for comparison. Results show that the proposed method is able to precisely estimate BDS satellite DCBs: (1) the mean value of the day-to-day scattering for all available BDS satellites is about 0.24Â ns, which is reduced in average by 23% when compared with the results derived by only GFPSR. Moreover, the mean value of the day-to-day scattering of IGSO satellites is lower than that of GEO and MEO satellites; (2) the mean value of RMS of the difference with respect to DLR DCB products is about 0.39Â ns, which is improved by an average of 11% when compared with the results derived by only GFPSR. Besides, the RMS of IGSO and MEO satellites is at the same level which is better than that of GEO satellites.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Space and Planetary Science
Authors
Lei Fan, Min Li, Cheng Wang, Chuang Shi,