Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5486805 | Advances in Space Research | 2016 | 17 Pages |
Abstract
The focus of this paper is to develop a control scheme for overcoming the nutational motion of an asymmetric spin satellite regardless of its spin-to-transverse inertia ratio using a single reaction wheel mounted along the desired spin axis. In this strategy the basic Proportional-Derivative (PD) controller is acted on the precession angle error and, moreover, Lyapunov stability is applied for creating positive spin rate using proper precession command. A Monte Carlo type approach is used to verify the stability for various inertia ratios. The control system makes use of only angular velocity of wheel and spacecraft angular rates to stabilize spin. This active nutation controller globally and asymptotically stabilizes the spacecraft about a revolute motion and provides automatically logical recovery of desired positive spin from any initial state. This straightforward attitude recovery technique does not require accurate estimates of spacecraft inertias and various simulation results demonstrate that stability is not affected by various inertia ratios. Numerical simulations confirm that the approach has typically robust performance.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Space and Planetary Science
Authors
Hamed Shahmohamadi Ousaloo,